

J.P. Morgan Healthcare Conference

January 2024

Safe harbor disclosures

Certain statements in this presentation and the accompanying oral commentary are forward-looking statements within the meaning of the federal securities laws. These statements relate to future events or Seer, Inc.TM (the "Company")'s future results and involve known and unknown risks, uncertainties and other factors that may cause the actual results, levels of activity, performance or achievements of the Company or its industry to be materially different from those expressed or implied by any forward-looking statements. In some cases, forward-looking statements can be identified by terminology such as "may," "will," "could," "would," "to," "target," "expect," "plan," "anticipate," "intend," "believe," "estimate," "predict," "potential" or other comparable terminology. These forward-looking statements include, but are not limited to, statements regarding the Company's projections of market opportunities and the Company's business and industry; statements regarding the Company's business strategy, product development, operations, results of operations, financial needs, and financial condition; and statements regarding the Company's long-term expectations and future performance.

All statements other than statements of historical fact could be deemed forward-looking. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including, among other things the risk factors described in the Company's filings with the Securities and Exchange Commission ("SEC") and other documents that the Company subsequently files with the SEC from time to time.

While the Company believes these expectations, assumptions, estimates and projections are reasonable, such forward-looking statements are only predictions and involve known and unknown risks and uncertainties, many of which are beyond the Company's control. These and other important factors may cause actual results, performance, or achievements to differ materially from those expressed or implied by these forward-looking statements. The forward-looking statements in this presentation are made only as of the date hereof. For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of the Company in general, are described more fully in the Company's filings with the SEC and other documents that the Company subsequently files with the SEC from time to time. The Company specifically disclaims any intention to update any forward-looking statements included in this presentation. If one or more of these statements is updated or corrected, investors and others should not conclude that additional updates or corrections will be made.

In light of the foregoing, investors are urged not to rely on any forward-looking statement in reaching any conclusion or making any investment decision about any securities of the Company.

We imagine and pioneer new ways to

decode the biology of the proteome

to improve human health

Full characterization of the proteome is essential

Phenotype

Volume 164, Issue 4, 11 February 2016, Pages 805-817

CellPress

Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing

Xinging Yang ¹, 2, 3, 4, 37, Jasmin Coulombe-Huntington ⁵, 17, 19, Shuli Kang ⁶, 17, 29, Gloria M. Sheynkman ¹, 2, 1, 17, Tong Hao ¹, 2, 3, 17, Aaron Richardson ¹, 2, 1, Song Sun ², 8, 9, 10, Fan Yang ⁷, 1, 9, Yun A. Shen ¹, 2, 3, Ryan R. Murray ², 3, 21, Xaortia Sningha, 1, 2, 3, Unident E. Barn, 1, 3, 3, 27, Visional Theoreticada II, Andrew Martinilison 7, 3, 23

Science Translational Medicine

HOME → SCIENCE TRANSLATIONAL MEDICINE → VOL. 13, NO. 605 → TGFB2 AND TGFB3 ISOFORMS DRIVE FIBROTIC DISEASE PATHOGENESIS

fy∕in

TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis

TIANHE SUN (o , ZHIYU HUANG, WEI-CHING LIANG, JIANPING YIN (o , [...], AND JOSEPH R. ARRON (o +30 authors) Authors Info & Affiliations

SCIENCE TRANSLATIONAL MEDICINE + 3 Aug 2021 + Vol 13, Issue 605 + DOI: 10.1126/scitranslmed.abe0407

nature

Article Published: 04 November 2020

Combinatorial expression of GPCR isoforms affects signalling and drug responses

Maria Marti-Solano [™], Stephanie E. Crilly, Duccio Malinverni, Christian Munk, Matthew Harris, Abigail Pearce, Tezz Quon, Amanda E. Mackenzie, Xusheng Wang, Junmin Peng, Andrew B. Tobin, Graham Ladds, Graeme Milligan, David E. Gloriam, Manojkumar A. Puthenveedu & M. Madan Babu [™]

Science Signaling

Opposing roles of RUBCN isoforms in autophagy and memory B cell generation

CHAOYUAN TSAI 🗿 . SHUHEI SAKAKIBARA 🌀 . YU-DIAD KUAN 🎯 . HIROKO OMORI, [...], AND HITOSHI KIKUTANI 🎯 🕂 🕂 authors 🛛 Authors Info & Affiliations

SCIENCE SIGNALING + 19 Sep 2023 + Vol 16, Issue 803 + <u>DOI: 10.1126/acisignal.ade8599</u>

Changing the trajectory of deep unbiased proteomics

2024

Differentiated biological insights of unbiased proteomics for early cancer detection

2023

PrognomiQ study 15,000 begins Customers studies at scale with >8,000 proteins

2022

Multiple studies of >1,000 samples completed Deepest customer study >6,000 proteins

2020

Seer study of 141 samples; 2,500 proteins First Proteograph[™] shipped to customer

2017

Seer founded

2015

Deepest study (16 samples; 5,300 proteins)

2019

Largest study (48 samples; 1,835 proteins)

OPENING UP A NEW GATEWAY TO THE PROTEOME

1999

1000

Deep Unbiased Study Size

10s of 1000s

(# samples)

1st PubMed mention of Human Proteome Project

2001

HUPO founded

HPPP launched

© 2024 Seer, Inc.

Seer is positioned to lead the proteomics revolution

Deep, unbiased, highthroughput

Able to analyze 10,000+ samples per year

Seer enables unbiased, deep and rapid proteomic analysis at scale

Lab on a nanoparticle

Taking advantage of the way proteins interact

Exceptional performance and flexibility

- High accuracy and reproducibility
- Quantitative measurement
- Broad dynamic range
- 1% false discovery rate (FDR)
- Wide range of sample types
- Species agnostic

Deep

Largescole

Unbiased

seer

Differentiated biological insights and applications

- Protein isoforms
- Protein variants
- pQTLs
- Biomarker discovery
- Drug target discovery
- Model organisms
- QC of biomanufacturing

Unbiased

seer

Deep

Largescole

Significant need for unbiased proteomics at scale

Academic

Translational

Commercial

Pharma

Applied

10

© 2024 Seer, Inc.

Proteomics

~\$24B

Strong execution across 2023

Developed / enhanced technology

- ✓ Launched Proteograph XT
- Updates to Proteograph Analysis Suite (PAS)

Removed barriers to enhance access

2

- ✓ Launched Seer Technology Access Center (STAC)
- Launched Strategic Instrument Placement Program (SIPP)
- Expanded Centers of Excellence (COE) program

Expanded commercial reach and validation

- Added four new distributors
- Added publications
 & pre-prints

3

Received ISO 13485
 & 27001 certifications

Customers are excited about the expanded protein coverage and throughput of XT

2.5x sample throughput without sacrificing depth

Significantly more proteins detected by mass spec with Seer technology

Now ~50% of installed base **upgraded to XT**

Seer's Proteograph consistently improves mass spec performance

These are representative numbers achieved on these platforms in these years. This is not a direct head-to-head evaluation

Sources: seer.bio/protein-discovery-catalog/; olink.com/products-services/exploreht/olink-

Introducing Seer's Protein Discovery Catalog for discovering biological value

- Growing catalog of 10,000+ proteins across 1,900+ pathways
- Discover proteins associated with 100,000+ possible biomarkers
- Includes proteins not yet associated with diseases
- Add precision, insights, and opportunities for biomarker discovery to genomics and proteomics studies

see	er			Products ~ Tec	chnology Resources 🗸	Support V Company V	Careers PAS
	SEER TECHNOLOGY Protein Explore our growing catal measurements across mu your research.	Disco og of mass-spec l Iltiple sample type	Very based proteomi as and species t	Catalog cs data with definitive o bolster confidence in			
	Protein List			Q Search	Show all disease areas	\$ Show all reactome pat	hways 💠
	Full Name	Gene Name 🗸	Uniprot ID	Keywords	Disease Association(s)	Reactome Pathway	
	Alpha-1B-glycoprotein	A1BG	P04217	Alternative splicing; Direct protein sequencing; Disulfide bond;	Glioblastoma multiforme	Hemostasis; Immune System	

Glycoprotein; Immunoglobulin domain

Alternative splicing; Direct protein sequencing; Disulfide bond; Glycoprotein; Immunoglobulin domain; Reference proteome; Repeat; Secreted;

Reference proteome; Repeat; Secreted;

Glioblastoma multiforme

Hemostasis: Immune System

Alpha-1B-glycoprotein

A1BG

P04217-2

Functional implication of protein variants across the population is massive

Population (~455,000 individuals)

All protein genetic variants	8,868,971	
Potential deleterious variants	6,345,457	
Protein loss of function	915,289	
Change protein structure/binding	> 3 million	

Source: Backman, J.D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021)

seer

Strong demand for STAC services exemplifying the power of the Proteograph XT and accelerating adoption

Partnership with Thermo Fisher Scientific provides access to newly launched Proteograph XT + Orbitrap Astral LC-MS

Average protein groups per plasma study

6.8X Average fold improvement over neat plasma

2

OMMUNICATIONS

PNAS

R Check for updates

Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona

John E Blume©¹⁶⁴⁸, William C. Manning¹⁶, Gregory Trolano¹⁶, Daniel Hornburg¹⁶, Michael Figa¹, Lyndal Hesterberg¹, Theodore L. Plat¹, Xiaoyan Zhao¹, Rea A. Cuaresma¹, Patrick A. Everley, Marvin Ko¹, Hope Liou¹, Max Mahone¹, Shadi Fedosia¹⁰, "Elaher M. Bigeran¹, Caig Stolarczyk", Behtad Tangeysh¹, Hongwei Xia¹, Ryan Bent¹, Axim Siddiqui¹, Steven A. Carr², Philip Ma¹, Robert Langer⁶, Vivek Farias⁶, 481 & Omid C. Farokhad⁶, ¹⁵³⁸

Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions

RESEARCH ARTICLE APPLIED BIOLOGICAL SCIENCES ENGINFFRING

Shad Ferdor[®], Behtad Tangeyn^{*}, Titsan R. Bown[®], P. Atrick A. Berley^{*}, Mchael Fajs^{*}, Matthee M.Lsan^{*}, Esher M. Egerar^{*}, Xaoyan Zhao^{*}, Weter J. Garcia[®], Tanyu Weng^{*}, Matthee E. K. Charg[®], S. Kateyok Redent^{*}, Jaccia C. H., Max Mahong^{*}, Iongen^{*}, Kai P. Mo Cang Salaucy^{*}, Shami Hamin[®], Theodor L. Haff, Philp McA. Minn Goldare^{*}, Holen Hange[®], Bank R. Pol^{*}, Shan Benz^{*}, We Tao⁴⁴⁰, Jun Chu Curves^{*}, Seafine Bacogov^{*}, John E. Blam[®], J. Ken Sidag^{*}, Davie Hontburg^{*}, and Omd C. Farishara^{44,44} (Edeb dy Ch-Ming, Curves^{*}), Levines J. Honge, Topic, Tange, Tanger, Markin R. Pol^{*}, Janger Benz^{*}, We Tao⁴⁴⁰, Edeb dy Ch-Ming, Curves^{*}, De Livense^{*}, J. Honge, Topic Kang, Churves Mark R. 20, 201, Carepto Desember 17, 201

ADVANCED MATERIALS

Research Article

Enhanced competition at the nano-bio interface enables comprehensive characterization of protein corona dynamics and deep coverage of proteomes

Daniel Hornburg 🕿 Shadi Ferdosi, Alexey Stukalov, Moaraj Hasan, Behzad Tangeysh, Tristan R. Brown, Tianyu Wang, Eltaher M. Elgierari, Xiaoyan Zhao, Yingxiang Huang, Amir Alavi ... See all authors 🗸

First published: 20 August 2022 | https://doi.org/10.1002/adma.202206008

PLOS ONE

GOPEN ACCESS 💋 PEER-REVIEWED

Functionally distinct BMP1 isoforms show an opposite pattern of abundance in plasma from non-small cell lung cancer subjects and controls

Margaret K. R. Donovan 👜 "Mngalang Huang 🤤 John E. Blume, Jian Wang, Daniel Homburg, Shadi Ferdosi, Iman Mohtashemi, Sangtae Kim, Marvin Ko, Ryan W. Benz, Theodore L. Platt, Serafim Batzoglou, Luis A. Diaz, Omid C. Farokitzad, Asim Siddigu 😭

Published: March 29. 2023 • https://doi.org/10.1371/journal.pone.0282821

THE PREPRINT SERVER FOR BIOLOGY

New Results

Protein Coronas on Functionalized Nanoparticles Enable Quantitative and Precise

A Follow this preprint

Large-Scale Deep Plasma Proteomics

Ting Huang, Jian Wang, Alewey Stukiakov, Margaret K. R. Donovan, Shadi Ferdosi, Lury Williamson, Seth Just, Gabriel Castro, Lee S. Cantrell, Etaher Elgierari, Ryan W. Benz, Yingxiang Huang, Khatereh Motamedchaboki, Amirmansoor Hakimi, Tabwatg Arrey, Eugen Damoc, Simion Kreimer, Omid C. Farokhzad, Seralim Batzoglou, Asim Sidojau, Jennifer E. Van Eyk, © Daniel Hornburg doi: https://doi.org/10.1011/2022.08.255525

Growing validation of Seer technology

Public presentations to date

180

48

Posters and presentations by customers

8

Manuscripts in bioRxiv Peer-reviewed articles

Emergence of Third-Party Customer Publications

>10 publications submitted by customers

Growing revenue and strong balance sheet

Strong Balance Sheet¹

\$381 Million

Cash, Cash Equivalents and Investments

No Debt

Market development to broad scale adoption

Phase 3

Widespread adoption and revenue

growth

Phase 4

seer

Focus areas for 2024

Drive evidence and publications

Deliver cohort studies and strategic collaborations to drive third-party data and evidence 2

Continue to enhance access

Continue to enhance market access and drive additional revenue through STAC

Product innovation and application expansion

3

Address customer adoption barriers with new automation, assays, and software to improve performance, throughput, and lower cost

~1,800 sample cohort identifies markers of Alzheimer's Disease, fast and slow cognitive decline

138 identified markers of Alzheimer's Disease vs normal

94/138

Putative novel Alzheimer's disease biomarkers

8

identified markers distinguishing fast and slow progressors of cognitive decline

are not present on high-plex affinity panel

Follow-up time (years)

Deep, unbiased proteomics at scale powers a breakthrough advance in early lung cancer detection

Multi-omics profiling detected 8,385 proteins groups, >200,000 RNA transcripts, and >1,000 metabolites

Unbiased discovery proteomics used to develop circulating aging signatures in mice

- 896 samples, >4,300 protein groups
- 64 proteins were differentially abundant in initial 30 sample pilot program of mice
- None of these proteins are on the highplex affinity-based mouse panel
- Proteograph enables deep, unbiased proteomics and is species-agnostic

Identified pathways related to lipid and triglycerides transport and metabolism

The Proteograph platform has unlocked several new research directions that were previously hampered by technical challenges in our lab. For the first time, we are able to look comprehensively at longitudinal age-related changes in low volumes of mouse blood and generate unprecedented biomarker signatures of aging-related outcomes...enabling a more biologically relevant view of the secretome.

Nate Basisty, PhD

0.0430

0.0428

0.0426

0.0424

0.0422

National Institute on Aging

Deep protein profiling in xenotransplant enables simultaneous profiling of human and pig proteins

- 2 decedent humans received a pig heart transplant
- Levels of human proteins and their pig ortholog are separately monitored
- Proteograph delivers unique value even for the most complex and unusual sample types

>6,850>1,850human proteinspig proteins

Only 25-30% of individuals on the transplant waiting lists receive a life-saving organ. Geneediting pig organs are a very promising avenue to address this need...**We have been able to detect over 8,000 pig and human proteins in the plasma of these human decedents and it has facilitated analyses we never thought possible.**

Brendan Keating, PhD

NYU Grossman School of Medicine Department of Surgery

Apps Lab continues to expand protocols, sample types & applications

SP100

2024 catalysts

Drive evidence and publications

Increase publications and large-scale studies

- Deliver cohort studies and strategic collaborations to drive third-party evidence
- Invest in helping customers to accelerate publications
- Continue demonstrating how an unbiased approach accelerates discovery

2

Continue to enhance access

Increase use of STAC and SIPP

- Continue to drive market access
- Double down on efforts to reach genomics audience
- Make PAS more user-friendly for biologists
- Expand STAC capacity to accelerate more samples to data

Product innovation and application expansion

Increase product enhancements and applications from Apps Lab

- Address customer adoption barriers with new automation, assays, and software to improve performance, throughput and lower cost
- Add new partners

